
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of Polynomial Interpolation in Reed

Solomon Error Correction

Muhammad Jibril Ibrahim 135230851,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523085@mahasiswa.itb.ac.id, 2mjibrahimcollege@gmail.com

Abstract— Error correction is an essential component of

modern digital communication and data storage systems,

ensuring data reliability in the face of noise, interference, and

corruption. This article explores the application of

polynomial interpolation in error correction, particularly its

use in Reed-Solomon (RS) codes. Polynomial interpolation

forms the mathematical foundation for constructing and

decoding RS codes, enabling the detection and correction of

errors. The discussion includes the principles of interpolation

and polynomial interpolation, emphasizing methods like

Lagrange and Newton interpolation, and their role in solving

systems of linear equations. Furthermore, the article delves

into the algebraic structure of Galois fields, which underpin

the operations in RS codes. These fields facilitate efficient

encoding and decoding processes, allowing RS codes to

recover original data even in adverse conditions. Reed-

Solomon codes are highlighted for their robustness and

versatility, with detailed explanations of their encoding and

decoding mechanisms. Practical examples illustrate their

applications in correcting burst and random errors, as seen

in CDs, DVDs, QR codes, and satellite communications. By

examining the interplay between mathematics and

technology, this article underscores the critical role of

polynomial interpolation and RS codes in preserving data

integrity across diverse domains.

Keywords— Error Correction, Polynomial Interpolation,

Reed-Solomon Codes, Galois Fields, Encoding and Decoding,

Finite Fields,

I. INTRODUCTION

Error correction is a cornerstone of modern digital

communication and storage systems, ensuring the

reliability and integrity of data in environments prone to

noise, interference, and corruption. At the heart of error

correction lies polynomial interpolation, a mathematical

technique that enables the reconstruction of missing or

corrupted information. Among its most impactful

applications is in Reed-Solomon codes, a class of error-

correcting codes that have become ubiquitous in everyday

technology.

Reed-Solomon codes leverage polynomial interpolation

to encode data into codewords that are resilient to errors.

When data is transmitted or stored, it is often subjected to

distortions caused by physical damage, electromagnetic

interference, or other forms of corruption. By applying the

principles of polynomial interpolation during decoding,

Reed-Solomon codes can detect and correct errors,

recovering the original data even when parts of it are

compromised. This capability is essential for maintaining

the integrity of data in a wide range of applications.

The importance of error correction cannot be overstated.

It is the reason why scratched compact discs can still play

music, damaged QR codes can still be scanned, and

satellite communications remain reliable despite

atmospheric interference. Error correction through Reed-

Solomon codes is also critical in high-density data storage,

such as DVDs and Blu-ray discs, as well as in data

transmission over fiber-optic cables and wireless networks.

The ability to ensure accurate data retrieval in these

scenarios is a testament to the robustness and versatility of

error-correcting algorithms.

This article delves into the role of polynomial

interpolation in error correction, with a focus on its

implementation in Reed-Solomon codes. By exploring the

mathematical foundations and practical applications of

these codes, we aim to highlight their pervasive presence

in modern technology and their crucial role in preserving

data integrity across diverse domains.

II. FUNDAMENTAL THEOREM

A. Interpolation

Interpolation, in mathematics, is the process of

estimating values between known data points by

constructing a function that passes through those points.

Given a set of distinct data points (𝑥𝑖 , 𝑦𝑖) interpolation

seeks to find a function such that 𝑓(𝑥𝑖) = 𝑦𝑖 for every

points in the dataset.

For example, given these 4 known points

(1, −2), (2, 6), (4, 28), (5, 42). We can create a function

𝑓(𝑥) = 𝑥2 + 5𝑥 − 8 that satisfies every known points.

Through this function we can estimate the value of an

unknown points such as (3, 16). But do note that the

estimation may not be accurate as there may exist another

function that satisfies the known points.

B. Polynomial Interpolation

One of the simplest type of interpolation is the

polynomial interpolation. Polynomial interpolation is a

mailto:113523085@mahasiswa.itb.ac.id
mailto:2mjibrahimcollege@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

method to estimate values between known data points by

constructing a polynomial that passes through all the

known points. The basis of using polynomial interpolation

to estimate values is from Weierstrass’ theorem, which

states that every continuous function on a closed interval

can be approximated arbitrarily well by a polynomial.

Polynomial interpolation is also supported by the

uniqueness theorem which states that polynomials that fit

the interpolation condition exist and is unique.

In general, given a set of 𝑛 + 1 distinct known

points (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2,3, … , 𝑛. The polynomial that is

constructed by the interpolation will be of degree n.

𝑃(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛. Though

there are many ways to construct such polynomial, one way

is to construct a system of linear equation where 𝑃(𝑥𝑖) =
 𝑦𝑖 for every known points.

 𝑃(𝑥0) = 𝑐0 + 𝑐1𝑥0 + 𝑐2𝑥0
2 + 𝑐3𝑥0

3 + ⋯ + 𝑐𝑛𝑥0
𝑛 = 𝑦0

 𝑃(𝑥1) = 𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥1
2 + 𝑐3𝑥1

3 + ⋯ + 𝑐𝑛𝑥1
𝑛 = 𝑦1

 𝑃(𝑥2) = 𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥2
2 + 𝑐3𝑥2

3 + ⋯ + 𝑐𝑛𝑥2
𝑛 = 𝑦2

 𝑃(𝑥3) = 𝑐0 + 𝑐1𝑥3 + 𝑐2𝑥3
2 + 𝑐3𝑥3

3 + ⋯ + 𝑐𝑛𝑥3
𝑛 = 𝑦3

 𝑃(𝑥𝑛) = 𝑐0 + 𝑐1𝑥𝑛 + 𝑐2𝑥𝑛
2 + 𝑐3𝑥𝑛

3 + ⋯ + 𝑐𝑛𝑥𝑛
𝑛 = 𝑦𝑛

With this linear equation system, we can then find the

coefficients of the polynomial and create the final

polynomial solution of the interpolation. To prove the

uniqueness of the solution we can create a Vandermonde

matrix from the linear equation system.

𝑽 = ||

1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
𝑛

||

In linear algebra, we found that the whole system of

equations has a unique solution if and only if the

determinant of the Vandermonde matrix is 0. when 𝑖 ≠
𝑗 and 𝑥𝑖 ≠ 𝑥𝑗, then

|𝑽| = ∏ (𝑥𝑗 − 𝑥𝑖)

0≤𝑖<𝑗≤𝑛

≠ 0

Which means as long as the given points are distinct,

the polynomial created from the interpolation exist and is

unique.

C. System of Linear Equation

A system of linear equations consists of multiple linear

equations that share a common set of variables. The

purpose is to find values for these variables that satisfy all

the equations simultaneously. For example, a system like

the following,

3𝑥1 + 2𝑥2 = 5

𝑥1 + 3𝑥2 = −3

Has the solution 𝑥1 = 3 and 𝑥2 = −2.

While there are many methods to solve linear equation

system such as elimination, substitution, and using graphs,

the most common method is the matrix method as it makes

it easier to code and compute. The matrix method write the

linear equation system into 𝐴𝑥 = 𝑏 where A is the

coefficient matrix while b is vector of constant. For

example, the previous system can be rewritten into

 |
3 2
1 3

| 𝑥 = |
5

−3
|

From here, there are multiple ways to solve the linear

equation system such as Gaussian Elimination, Gauss-

Jordan Elimination, Cramer’s Rule, and others.

D. Reed Solomon Code

Reed-Solomon (RS) codes are a non-binary cyclic codes

with symbols made up of m-bit sequence, where m is an

integer bigger than 2. Reed-Solomon codes are defined

over a finite field, specifically Galois field, and are

characterized by tow parameters, n and k, where n is the

total number of symbols in the encoded block and k is the

number of data symbols being encoded. Reed-Solomon

(𝑛, 𝑘) codes exist for all n and k where,

0 < 𝑘 < 𝑛 < 2𝑚 + 2

In general, Reed-Solomon (𝑛, 𝑘) code is used with the

parameter (𝑛, 𝑘) = (2𝑚 − 1, 2𝑚 − 1 − 2𝑡). Where 𝑡 is

the number of symbol error correction capability of the

code and 𝑛 − 𝑘 is the number of parity symbols in the code.

The code is capable of correcting any combination of 𝑡 or

fewer error with

𝑡 = ⌊
𝑛 − 𝑘

2
⌋

Reed-Solomon codes are constructed by evaluating

polynomials at distinct points in a finite field. Given a

message polynomial 𝑃(𝑥) of degree 𝑘 − 1, the encoded

block is formed by evaluating 𝑃(𝑥) at 𝑛 distinct points,

resulting in an codeword of length 𝑛.

RS codes can correct both burst errors and random

errors. A burst error affects consecutive symbols, while

random errors occur at arbitrary positions. The use of finite

fields ensures that all operations remain within a fixed

range, simplifying computations and enabling hardware

implementations.

Reed-Solomon codes are highly effective against burst

and random errors, making them indispensable in

technologies like CDs, DVDs, QR codes, and satellite

transmissions. By leveraging polynomial interpolation,

these codes ensure robust error correction and data

recovery even in challenging conditions.

E. Galois Fields

Galois fields, also known as finite fields, are

mathematical structures comprising a finite number of

elements in which addition, subtraction, multiplication,

and division (excluding division by zero) are well-defined

and satisfy the field axioms. These fields are fundamental

in various areas of mathematics and have practical

applications in coding theory, cryptography, and digital

signal processing.

A Galois field contains a limited set of elements. The

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

number of elements in such a field is always a power of a

prime number, denoted as 𝑝𝑛, where 𝑝 is a prime number

and 𝑛 is a positive integer. For instance, the field 𝐺𝐹(2)

consists of two elements, 0 and 1, and is called a base field.

While the field 𝐺𝐹(24) consist of sixteen elements, from 0

to 15, and is called an extension field.

Within a Galois field, the operations of addition,

subtraction, multiplication, and division (except by zero)

are defined and adhere to the field axioms, ensuring

properties like associativity, commutativity, distributivity,

and the existence of additive and multiplicative identities

and inverses.

In extension fields 𝐺𝐹(𝑝𝑛) the elements are polynomials

with coefficients in the base field 𝐺𝐹(𝑝). These

polynomials have degrees less than 𝑛, and arithmetic

operations on them (addition, subtraction, multiplication,

and division) are performed modulo an irreducible

polynomial 𝑃(𝑥). This irreducible polynomial ensures that

the set forms a field, meaning all operations (except

division by zero) are valid.

In a Galois field 𝐺𝐹(2) (binary field), addition and

subtraction operations is followed with modulo 2 which is

equivalent to XOR operation. For example, assume 𝑎(𝑥) =
𝑥2 + 1 and 𝑏(𝑥) = 𝑥 + 1. Polynomial 𝑎(𝑥) can be

represented as 101 and 𝑏(𝑥) can be represented as 011.

The addition result of the polynomial is 𝑥2 + 𝑥 which can

be represented as 110 and is the same value we get when

we XOR 𝑎(𝑥) and 𝑏(𝑥). The same principle applies for

subtraction as well.

III. REED-SOLOMON CODE SYSTEM

A. Encoding

The encoding process begins by representing the input

data as a polynomial over a finite field, 𝐺𝐹(𝑞), where 𝑞 =
𝑝𝑚, 𝑝 is a prime number, and 𝑚 determines the size of the

field. The message is composed of 𝑘 symbols, each

corresponding to an element of 𝐺𝐹(𝑞). These symbols are

arranged into a polynomial 𝑚(𝑥) with coefficients

representing the data symbols:

𝑚(𝑥) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥2 + ⋯ + 𝑚𝑘−1𝑥𝑘−1

With 𝑚0, 𝑚1, 𝑚2, … , 𝑚𝑘−1 ∈ 𝐺𝐹(𝑞) and the degree of

𝑚(𝑥) is 𝑘 − 1. This polynomial is a mathematical

abstraction of the data and serves as the basis for

constructing the Reed-Solomon codeword.

Before we can use the previously made polynomial, there

is another polynomial we must create first which is the

generator polynomial 𝑔(𝑥), which determines the structure

of the codeword. The generator polynomial is of

degree 𝑛 − 𝑘, where 𝑛 represents the total number of

symbols in the final codeword, and 𝑛 − 𝑘 represents the

parity-check symbols. The generator polynomial is

constructed as:

𝑔(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼1)(𝑥 − 𝛼2) … (𝑥 − 𝛼𝑛−𝑘)

Where 𝛼 is a primitive element of 𝐺𝐹(𝑞). The choice of

𝑔(𝑥) ensures that it has 𝑛 − 𝑘 consecutive roots in 𝐺𝐹(𝑞).

This property is fundamental to the error-correcting

capability of RS codes, as it guarantees that any valid

codeword polynomial 𝑈(𝑥) is divisible by 𝑔(𝑥).

After creating both the message polynomial 𝑚(𝑥) and

generator polynomial 𝑔(𝑥), we can now encode the data by

first shifting the message polynomial into the rightmost 𝑘

stages of a codeword register and then appending a parity

polynomial 𝑝(𝑥) by placing it in the leftmost 𝑛 − 𝑘 stages.

We can do this by multiplying 𝑚(𝑥) by 𝑥𝑛−𝑘 which would

algebraically shift the message polynomial. After this, we

divide 𝑥𝑛−𝑘𝑚(𝑥) by the generator polynomial 𝑔(𝑥),

which is written in the following form:

𝑥𝑛−𝑘m(𝑥) = q(𝑥)g(𝑥) + p(𝑥)

Where q(𝑥) is the quotient polynomials and p(𝑥) is the

remainder polynomial which is also the parity. With both

the message polynomial and parity polynomial created, we

can construct the final codeword polynomial by combining

the message polynomial and parity polynomial, which is

written in the following form:

𝑈(𝑥) = 𝑥𝑛−𝑘𝑚(𝑥) + 𝑝(𝑥)

Where q(𝑥) is the quotient polynomials and p(𝑥) is the

remainder. This codeword is structured so that the first 𝑘

terms correspond to the message, while the remaining 𝑛 −
𝑘 terms are parity symbols. A valid codeword polynomial

is of the following form:

U(𝑥) = m(𝑥)g(𝑥)

Which means that the root of a generator polynomial must

be the same as the root of the codeword polynomial.

Therefore, for an arbitrary codeword polynomial, when

evaluated at any root of the generator polynomial must

result in zero. This fact is used for decoding and error

detection a codeword.

B. Decoding & Error-Correction

The decoding process is relatively more complex than

its encoding counterpart. Decoding can be divided to four

steps, syndrome calculation for detecting error, locating

error, determining the error magnitude, and correcting the

error. The last two process can be skipped if there is no

error detected by the syndrome calculation.

The decoding starts with a received sequence, which

may differ from the transmitted codeword due to errors

which can be represented as:

𝑟(𝑥) = 𝑈(𝑥) + 𝑒(𝑥)

Where 𝑟(𝑥) is the received polynomial, 𝑈(𝑥) is the

original (transmitted) codeword polynomial, and 𝑒(𝑥) is

the error polynomial, which has nonzero coefficients only

at positions corresponding to errors.

The decoder then calculates syndromes by evaluating

𝑟(𝑥) at specific points related to the generator polynomial's

roots, which can be written to,

𝑆𝑖 = 𝑟(𝛼𝑖) 𝑓𝑜𝑟 𝑖 = 1, 2, … ,2𝑡

Where 𝛼 is a primitive element of the Galois is field

and 𝑡 is the error-correcting capability of the code. Each 𝑆𝑖

is essentially the evaluation of the received polynomial at

successive powers of the primitive element.

As mention before in the encoding section, for an

arbitrary codeword, when evaluated at any root of the

generator polynomial, 𝛼𝑖, must result in zero. Therefore, if

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

all syndromes are zero, the received sequence is error-free.

Otherwise, the syndromes reveal the presence of errors.

After knowing that the error exist, we must first locate it

before we can correct it. An error locator polynomial 𝜎(𝑥)

is defined as:

𝜎(𝑥) = ∏(1 − 𝛽𝑗𝑥)

𝜈

𝑗=1

= 1 + 𝜎1𝑋 + 𝜎2𝑋2 + ⋯ + 𝜎𝑣𝑋𝑣

Where 𝛽𝑗 = 𝛼𝑙𝑗 are the error locations, 𝑣 is the number

of errors, and 𝜎𝑖 are the coefficients of the error locator

polynomial. The reciprocal roots of 𝜎(𝑥) are the error

locations. To compute 𝜎(𝑥) we can derive a system of

equations using the error locator polynomial and

syndromes, which can be written as a matrix like the

following:

[

𝑆𝑡 𝑆𝑡−1 … 𝑆1

𝑆𝑡+1 𝑆𝑡 … 𝑆2

⋮ ⋮ ⋱ ⋮
𝑆2𝑡−1 𝑆2𝑡−2 … 𝑆𝑡

] [

𝜎1

𝜎2

⋮
𝜎𝑡

] = [

−𝑆𝑡+1

−𝑆𝑡+2

⋮
−𝑆2𝑡

]

The matrix equation can be solved using many

techniques, but the most used is the Berlekamp-Massey

which can efficiently finds the coefficient of the error

locator polynomial 𝜎(𝑥).

After finding the error locations, the magnitudes of the

errors must be determined to correctly fix the error in the

codeword. To determine them, another set of equation

system that uses the syndrome and the error locations as is

the following:

𝑆𝑖 = ∑ 𝑒𝑗𝛽𝑗
𝑖

𝜈

𝑗=1

, 𝑖 = 1,2, … ,2𝑡

Where 𝑒𝑗 are the error values and 𝛽𝑗 are the error

locations. Solving this equation system provides the

magnitudes of errors at the identified locations.

With both the locations and values of errors identified,

the errors can now be subtracted from the received

codeword to recover the original data. To do this, we

construct the error polynomial with the following

definition:

𝑒(𝑋) = ∑ 𝑒𝑗𝑋𝑙𝑗

𝜈

𝑗=1

Where 𝑗 is the error index (the 𝑗-th error) and 𝑙𝑗 is the

location of the 𝑗-th error. The corrected codeword is then

calculated by the following equation:

𝐔
^

(𝑋) = 𝐫(𝑋) + 𝐞
^

(𝑋) = 𝐔(𝑋) + 𝐞(𝑋) + 𝐞
^

(𝑋)

With this the removes the errors and restores the

transmitted codeword to its original state with The

rightmost 𝑘 symbols represent the original message.

IV. IMPLEMENTATION

The program is made by python and has a single class of

ReedSolomon that encompass all the functions needed to

encode and decode Reed-Solomon codes. The created

functions is mainly split into two types, function for Galois

field arithmetic operation and polynomial arithmetic

operation. The function that we first create is the function

to create the Galois field.

Fig 4.1. Generate Galois field

Source : writer’s archive

We create the Galois field with the primitive polynomial

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 which can be represented by the

hex 0x11d. The Galois field is done by using two list,

gf_exp and gf_log which is a lookup table that is made for

efficient multiplication and division in the Galois field.

The encoding is computed by making a padded data with

the length of 𝑛 and dividing them with the generator

polynomial that we have created. We append the remainder

of the division into the original data and we have our

encoded data with (𝑛 − 𝑘)/2 error correction capabilities.

Fig 4.2. Encode the data

Source : writer’s archive

The decoding is done by first calculate the syndrome of

the codeword, where if all the syndrome is zero then the

codeword has no error. Otherwise, the calculated syndrome

is used in the error locator function.

Fig 4.3. Decode codeword main function

Source : writer’s archive

The error_locator_eval function is a function for

identifying the locations of errors in the received

codeword. It uses the Berlekamp-Massey algorithm to

iteratively compute the error locator polynomial and its

corresponding evaluator polynomial from the syndromes.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

The syndromes are values that indicate discrepancies

between the received codeword and the expected

codeword. The output of this function is the final error

locator polynomial (current_x) and the evaluator

polynomial (current_v), which will later be used for

finding the exact error positions and magnitudes.

Fig 4.4. Error locator and evaluator function

Source : writer’s archive

The find_errors function is responsible for locating the

positions of the errors in the codeword. It leverages the

error locator polynomial generated by error_locator_eval.

The error locator polynomial has roots that correspond to

the locations of the errors in the received message. This

function evaluates the locator polynomial at different

powers of a primitive element 𝛼, essentially checking

where the polynomial evaluates to zero. The positions

where the polynomial evaluates to zero indicate the error

locations.

Fig 4.5. Find the location of the error

Source : writer’s archive

The correct_error function uses the error locator

polynomial and evaluator polynomial to correct the errors

found in the received codeword. Once the error locations

are determined, the function iterates through each error

position and calculates the magnitude of the error at that

position. The error magnitude is determined by evaluating

the error evaluator polynomial and the derivative of the

error locator polynomial at the corresponding position.

These evaluations give the values needed to correct the

error. Specifically, the function evaluates the locator

polynomial at the inverse of the error position (to find the

location in the Galois Field), and uses this to compute the

error magnitude. It then XORs (corrects) the received

codeword by the magnitude at the corresponding positions,

fixing the errors. The result is a corrected version of the

received codeword, now matching the original transmitted

message.

Fig 4.6. Error correction function

Source : writer’s archive

V. CONCLUSION

The application of polynomial interpolation in error

correction, particularly through Reed-Solomon codes,

highlights the synergy between mathematical theory and

practical technology. Reed-Solomon codes, built on the

principles of polynomial interpolation and Galois fields,

demonstrate exceptional capabilities in detecting and

correcting both burst and random errors in diverse data

transmission and storage scenarios.

The encoding and decoding mechanisms of these codes,

along with their reliance on efficient mathematical

algorithms such as the Berlekamp-Massey algorithm,

underline their robustness and efficiency in real-world

applications. From CDs and DVDs to QR codes and

satellite communications, Reed-Solomon codes ensure

data integrity even in adverse conditions, making them

indispensable in modern digital systems.

This study underscores the enduring importance of

mathematical tools in advancing technology, serving as a

testament to the practical impact of concepts like

polynomial interpolation and finite fields. Future research

and development may continue to enhance the

performance and versatility of these codes, paving the way

for even more resilient data systems.

VI. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to God

Almighty, Allah Subhanahu wa Ta’ala, for His blessings

and guidance, enabling the completion of this paper titled

“Application of Polynomial Interpolation in Reed Solomon

Error Correction” in a timely manner. The author extends

sincere appreciation to their parents and friends for their

unwavering support and encouragement, particularly in

providing mental motivation throughout the writing

process. Special thanks go to Dr. Rila Mandala, the lecturer

for Linear Algebra and Geometry K1 in the 2024/2025

academic year, for sharing valuable knowledge and

providing guidance during the learning process. The author

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

is also deeply grateful to Dr. Rinaldi Munir, one of the

lecturers for the same course, for delivering extensive

materials and references that were instrumental both during

the lectures and in the preparation of this paper. Lastly, the

author would like to thank all other individuals and parties

who contributed to the completion of this paper.

REFERENCES

[1] Reed, I. S. and Solomon, G., “Polynomial Codes Over Certain Finite

Fields,” SIAM Journal of Applied Math., vol. 8, 1960, pp. 300-304.

[2] Qunying, Liao. (2010). On Reed-Solomon codes. Chinese Annals
of Mathematics. Series B. 32. 89-98. 10.1007/s11401-010-0622-3.

[3] Berlekamp, E. R., Peile, R. E., and Pope, S. P., “The Application of

Error Control to Communications,” IEEE Communications
Magazine, vol. 25, no. 4

[4] Xu, Y., & Xu, R. (2022). Research on interpolation and data fitting:

Basis and applications. arXiv preprint arXiv:2208.11825.
[5] Wong, Jeffrey. 2020. "Polynomial Interpolation: The

Fundamentals." Math 563 Lecture Notes, Duke University.
Available at https://services.math.duke.edu/~jtwong/math563-

2020/lectures/Lec1-polyinterp.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 Desember 2024

Muhammad Jibril Ibrahim

13523085

