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Abstract— Error correction is an essential component of 

modern digital communication and data storage systems, 

ensuring data reliability in the face of noise, interference, and 

corruption. This article explores the application of 

polynomial interpolation in error correction, particularly its 

use in Reed-Solomon (RS) codes. Polynomial interpolation 

forms the mathematical foundation for constructing and 

decoding RS codes, enabling the detection and correction of 

errors. The discussion includes the principles of interpolation 

and polynomial interpolation, emphasizing methods like 

Lagrange and Newton interpolation, and their role in solving 

systems of linear equations. Furthermore, the article delves 

into the algebraic structure of Galois fields, which underpin 

the operations in RS codes. These fields facilitate efficient 

encoding and decoding processes, allowing RS codes to 

recover original data even in adverse conditions. Reed-

Solomon codes are highlighted for their robustness and 

versatility, with detailed explanations of their encoding and 

decoding mechanisms. Practical examples illustrate their 

applications in correcting burst and random errors, as seen 

in CDs, DVDs, QR codes, and satellite communications. By 

examining the interplay between mathematics and 

technology, this article underscores the critical role of 

polynomial interpolation and RS codes in preserving data 

integrity across diverse domains. 
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I.   INTRODUCTION 

Error correction is a cornerstone of modern digital 

communication and storage systems, ensuring the 

reliability and integrity of data in environments prone to 

noise, interference, and corruption. At the heart of error 

correction lies polynomial interpolation, a mathematical 

technique that enables the reconstruction of missing or 

corrupted information. Among its most impactful 

applications is in Reed-Solomon codes, a class of error-

correcting codes that have become ubiquitous in everyday 

technology. 

Reed-Solomon codes leverage polynomial interpolation 

to encode data into codewords that are resilient to errors. 

When data is transmitted or stored, it is often subjected to 

distortions caused by physical damage, electromagnetic 

interference, or other forms of corruption. By applying the 

principles of polynomial interpolation during decoding, 

Reed-Solomon codes can detect and correct errors, 

recovering the original data even when parts of it are 

compromised. This capability is essential for maintaining 

the integrity of data in a wide range of applications. 

The importance of error correction cannot be overstated. 

It is the reason why scratched compact discs can still play 

music, damaged QR codes can still be scanned, and 

satellite communications remain reliable despite 

atmospheric interference. Error correction through Reed-

Solomon codes is also critical in high-density data storage, 

such as DVDs and Blu-ray discs, as well as in data 

transmission over fiber-optic cables and wireless networks. 

The ability to ensure accurate data retrieval in these 

scenarios is a testament to the robustness and versatility of 

error-correcting algorithms. 

This article delves into the role of polynomial 

interpolation in error correction, with a focus on its 

implementation in Reed-Solomon codes. By exploring the 

mathematical foundations and practical applications of 

these codes, we aim to highlight their pervasive presence 

in modern technology and their crucial role in preserving 

data integrity across diverse domains. 

 

II.   FUNDAMENTAL THEOREM 

A. Interpolation 

Interpolation, in mathematics, is the process of 

estimating values between known data points by 

constructing a function that passes through those points. 

Given a set of distinct data points (𝑥𝑖 , 𝑦𝑖) interpolation 

seeks to find a function such that 𝑓(𝑥𝑖) =  𝑦𝑖  for every 

points in the dataset.  

For example, given these 4 known points 

(1, −2), (2, 6), (4, 28), (5, 42). We can create a function 

𝑓(𝑥) = 𝑥2 + 5𝑥 − 8 that satisfies every known points. 

Through this function we can estimate the value of an 

unknown points such as (3, 16). But do note that the 

estimation may not be accurate as there may exist another 

function that satisfies the known points. 

 

B. Polynomial Interpolation 

One of the simplest type of interpolation is the 

polynomial interpolation. Polynomial interpolation is a 
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method to estimate values between known data points by 

constructing a polynomial that passes through all the 

known points. The basis of using polynomial interpolation 

to estimate values is from Weierstrass’ theorem, which 

states that every continuous function on a closed interval 

can be approximated arbitrarily well by a polynomial. 

Polynomial interpolation is also supported by the 

uniqueness theorem which states that polynomials that fit 

the interpolation condition exist and is unique.  

In general, given a set of  𝑛 + 1 distinct known 

points (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2,3, … , 𝑛. The polynomial that is 

constructed by the interpolation will be of degree n. 

𝑃(𝑥) =  𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛. Though 

there are many ways to construct such polynomial, one way 

is to construct a system of linear equation where 𝑃(𝑥𝑖) =
 𝑦𝑖  for every known points. 

 

 𝑃(𝑥0) = 𝑐0 + 𝑐1𝑥0 + 𝑐2𝑥0
2 + 𝑐3𝑥0

3 + ⋯ + 𝑐𝑛𝑥0
𝑛 =  𝑦0 

 𝑃(𝑥1) = 𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥1
2 + 𝑐3𝑥1

3 + ⋯ + 𝑐𝑛𝑥1
𝑛 =  𝑦1 

 𝑃(𝑥2) = 𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥2
2 + 𝑐3𝑥2

3 + ⋯ + 𝑐𝑛𝑥2
𝑛 =  𝑦2 

 𝑃(𝑥3) = 𝑐0 + 𝑐1𝑥3 + 𝑐2𝑥3
2 + 𝑐3𝑥3

3 + ⋯ + 𝑐𝑛𝑥3
𝑛 =  𝑦3 

                 .... 

 𝑃(𝑥𝑛) = 𝑐0 + 𝑐1𝑥𝑛 + 𝑐2𝑥𝑛
2 + 𝑐3𝑥𝑛

3 + ⋯ + 𝑐𝑛𝑥𝑛
𝑛 =  𝑦𝑛 

 

With this linear equation system, we can then find the 

coefficients of the polynomial and create the final 

polynomial solution of the interpolation. To prove the 

uniqueness of the solution we can create a Vandermonde 

matrix from the linear equation system. 

 

𝑽 =  ||

1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
𝑛

|| 

 

In linear algebra, we found that the whole system of 

equations has a unique solution if and only if the 

determinant of the Vandermonde matrix is 0. when 𝑖 ≠
𝑗 and 𝑥𝑖 ≠ 𝑥𝑗, then  

 

|𝑽| = ∏ (𝑥𝑗 − 𝑥𝑖)

0≤𝑖<𝑗≤𝑛

≠ 0 

 

Which means as long as the given points are distinct, 

the polynomial created from the interpolation exist and is 

unique. 

 

C. System of Linear Equation 

A system of linear equations consists of multiple linear 

equations that share a common set of variables. The 

purpose is to find values for these variables that satisfy all 

the equations simultaneously. For example, a system like 

the following, 

3𝑥1 + 2𝑥2 = 5 

𝑥1 + 3𝑥2 = −3 

Has the solution  𝑥1 = 3 and 𝑥2 = −2. 

While there are many methods to solve linear equation 

system such as elimination, substitution, and using graphs, 

the most common method is the matrix method as it makes 

it easier to code and compute. The matrix method write the 

linear equation system into  𝐴𝑥 = 𝑏 where A is the 

coefficient matrix while b is vector of constant. For 

example, the previous system can be rewritten into 

 |
3 2
1 3

| 𝑥 = |
5

−3
| 

From here, there are multiple ways to solve the linear 

equation system such as Gaussian Elimination, Gauss-

Jordan Elimination, Cramer’s Rule, and others.  

 

D. Reed Solomon Code 

Reed-Solomon (RS) codes are a non-binary cyclic codes 

with symbols made up of m-bit sequence, where m is an 

integer bigger than 2. Reed-Solomon codes are defined 

over a finite field, specifically Galois field, and are 

characterized by tow parameters, n and k, where n is the 

total number of symbols in the encoded block and k is the 

number of data symbols being encoded. Reed-Solomon 

(𝑛, 𝑘) codes exist for all n and k where,  

0 < 𝑘 < 𝑛 < 2𝑚 + 2 

In general, Reed-Solomon (𝑛, 𝑘) code is used with the 

parameter (𝑛, 𝑘) = (2𝑚 − 1,  2𝑚 − 1 − 2𝑡). Where 𝑡 is 

the number of symbol error correction capability of the 

code and 𝑛 − 𝑘 is the number of parity symbols in the code. 

The code is capable of correcting any combination of 𝑡 or 

fewer error with 

𝑡 = ⌊
𝑛 − 𝑘

2
⌋ 

 

Reed-Solomon codes are constructed by evaluating 

polynomials at distinct points in a finite field. Given a 

message polynomial 𝑃(𝑥) of degree 𝑘 − 1, the encoded 

block is formed by evaluating 𝑃(𝑥) at 𝑛 distinct points, 

resulting in an codeword of length 𝑛.  

RS codes can correct both burst errors and random 

errors. A burst error affects consecutive symbols, while 

random errors occur at arbitrary positions. The use of finite 

fields ensures that all operations remain within a fixed 

range, simplifying computations and enabling hardware 

implementations. 

Reed-Solomon codes are highly effective against burst 

and random errors, making them indispensable in 

technologies like CDs, DVDs, QR codes, and satellite 

transmissions. By leveraging polynomial interpolation, 

these codes ensure robust error correction and data 

recovery even in challenging conditions. 

 

E. Galois Fields 

Galois fields, also known as finite fields, are 

mathematical structures comprising a finite number of 

elements in which addition, subtraction, multiplication, 

and division (excluding division by zero) are well-defined 

and satisfy the field axioms. These fields are fundamental 

in various areas of mathematics and have practical 

applications in coding theory, cryptography, and digital 

signal processing. 

A Galois field contains a limited set of elements. The 
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number of elements in such a field is always a power of a 

prime number, denoted as 𝑝𝑛, where 𝑝 is a prime number 

and 𝑛 is a positive integer. For instance, the field 𝐺𝐹(2) 

consists of two elements, 0 and 1, and is called a base field. 

While the field 𝐺𝐹(24) consist of sixteen elements, from 0 

to 15, and is called an extension field. 

Within a Galois field, the operations of addition, 

subtraction, multiplication, and division (except by zero) 

are defined and adhere to the field axioms, ensuring 

properties like associativity, commutativity, distributivity, 

and the existence of additive and multiplicative identities 

and inverses.  

In extension fields 𝐺𝐹(𝑝𝑛) the elements are polynomials 

with coefficients in the base field 𝐺𝐹(𝑝). These 

polynomials have degrees less than 𝑛, and arithmetic 

operations on them (addition, subtraction, multiplication, 

and division) are performed modulo an irreducible 

polynomial 𝑃(𝑥). This irreducible polynomial ensures that 

the set forms a field, meaning all operations (except 

division by zero) are valid. 

In a Galois field 𝐺𝐹(2) (binary field), addition and 

subtraction operations is followed with modulo 2 which is 

equivalent to XOR operation. For example, assume 𝑎(𝑥) =
𝑥2 + 1 and 𝑏(𝑥) = 𝑥 + 1. Polynomial 𝑎(𝑥) can be 

represented as 101  and 𝑏(𝑥) can be represented as 011. 

The addition result of the polynomial is 𝑥2 + 𝑥 which can 

be represented as 110 and is the same value we get when 

we XOR 𝑎(𝑥) and 𝑏(𝑥). The same principle applies for 

subtraction as well.  

 

III.   REED-SOLOMON CODE SYSTEM 

A. Encoding 

The encoding process begins by representing the input 

data as a polynomial over a finite field, 𝐺𝐹(𝑞), where 𝑞 =
𝑝𝑚, 𝑝 is a prime number, and 𝑚 determines the size of the 

field. The message is composed of 𝑘 symbols, each 

corresponding to an element of 𝐺𝐹(𝑞). These symbols are 

arranged into a polynomial 𝑚(𝑥) with coefficients 

representing the data symbols: 

𝑚(𝑥) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥2 + ⋯ + 𝑚𝑘−1𝑥𝑘−1 

With 𝑚0, 𝑚1, 𝑚2, … , 𝑚𝑘−1 ∈ 𝐺𝐹(𝑞) and the degree of 

𝑚(𝑥) is 𝑘 − 1. This polynomial is a mathematical 

abstraction of the data and serves as the basis for 

constructing the Reed-Solomon codeword. 

Before we can use the previously made polynomial, there 

is another polynomial we must create first which is the 

generator polynomial 𝑔(𝑥), which determines the structure 

of the codeword. The generator polynomial is of 

degree 𝑛 − 𝑘, where 𝑛 represents the total number of 

symbols in the final codeword, and 𝑛 − 𝑘 represents the 

parity-check symbols. The generator polynomial is 

constructed as: 

𝑔(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼1)(𝑥 − 𝛼2) … (𝑥 − 𝛼𝑛−𝑘) 

Where 𝛼 is a primitive element of 𝐺𝐹(𝑞). The choice of 

𝑔(𝑥) ensures that it has 𝑛 − 𝑘 consecutive roots in 𝐺𝐹(𝑞). 

This property is fundamental to the error-correcting 

capability of RS codes, as it guarantees that any valid 

codeword polynomial 𝑈(𝑥) is divisible by 𝑔(𝑥). 

After creating both the message polynomial 𝑚(𝑥) and 

generator polynomial 𝑔(𝑥), we can now encode the data by 

first shifting the message polynomial into the rightmost 𝑘 

stages of a codeword register and then appending a parity 

polynomial 𝑝(𝑥) by placing it in the leftmost 𝑛 − 𝑘 stages. 

We can do this by multiplying 𝑚(𝑥) by 𝑥𝑛−𝑘 which would 

algebraically shift the message polynomial. After this, we 

divide  𝑥𝑛−𝑘𝑚(𝑥) by the generator polynomial 𝑔(𝑥), 

which is written in the following form: 

𝑥𝑛−𝑘m(𝑥) = q(𝑥)g(𝑥) + p(𝑥) 

Where q(𝑥) is the quotient polynomials and p(𝑥) is the 

remainder polynomial which is also the parity. With both 

the message polynomial and  parity polynomial created, we 

can construct the final codeword polynomial by combining 

the message polynomial and parity polynomial, which is 

written in the following form:  

𝑈(𝑥) = 𝑥𝑛−𝑘𝑚(𝑥) + 𝑝(𝑥) 

Where q(𝑥) is the quotient polynomials and p(𝑥) is the 

remainder. This codeword is structured so that the first 𝑘 

terms correspond to the message, while the remaining 𝑛 −
𝑘 terms are parity symbols. A valid codeword polynomial 

is of the following form:  

U(𝑥) = m(𝑥)g(𝑥) 

Which means that the root of a generator polynomial must 

be the same as the root of the codeword polynomial. 

Therefore, for an arbitrary codeword polynomial, when 

evaluated at any root of the generator polynomial must 

result in zero. This fact is used for decoding and error 

detection a codeword.  

 

B. Decoding & Error-Correction 

The decoding process is relatively more complex than 

its encoding counterpart. Decoding can be divided to four 

steps, syndrome calculation for detecting error, locating 

error, determining the error magnitude, and correcting the 

error. The last two process can be skipped if there is no 

error detected by the syndrome calculation.  

The decoding starts with a received sequence, which 

may differ from the transmitted codeword due to errors 

which can be represented as:  

𝑟(𝑥) = 𝑈(𝑥) + 𝑒(𝑥) 

Where 𝑟(𝑥) is the received polynomial, 𝑈(𝑥) is the 

original (transmitted) codeword polynomial, and 𝑒(𝑥) is 

the error polynomial, which has nonzero coefficients only 

at positions corresponding to errors. 

The decoder then calculates syndromes by evaluating 

𝑟(𝑥) at specific points related to the generator polynomial's 

roots, which can be written to,  

𝑆𝑖 = 𝑟(𝛼𝑖) 𝑓𝑜𝑟 𝑖 = 1, 2, … ,2𝑡 

Where 𝛼 is a primitive element of the Galois is field 

and 𝑡 is the error-correcting capability of the code. Each 𝑆𝑖 

is essentially the evaluation of the received polynomial at 

successive powers of the primitive element. 

As mention before in the encoding section, for an 

arbitrary codeword, when evaluated at any root of the 

generator polynomial, 𝛼𝑖, must result in zero. Therefore, if 
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all syndromes are zero, the received sequence is error-free. 

Otherwise, the syndromes reveal the presence of errors. 

After knowing that the error exist, we must first locate it 

before we can correct it. An error locator polynomial 𝜎(𝑥) 

is defined as: 

𝜎(𝑥) = ∏(1 − 𝛽𝑗𝑥)

𝜈

𝑗=1

= 1 + 𝜎1𝑋 + 𝜎2𝑋2 + ⋯ + 𝜎𝑣𝑋𝑣 

Where 𝛽𝑗 = 𝛼𝑙𝑗 are the error locations, 𝑣 is the number 

of errors, and 𝜎𝑖 are the coefficients of the error locator 

polynomial. The reciprocal roots of 𝜎(𝑥) are the error 

locations. To compute 𝜎(𝑥) we can derive a system of 

equations using the error locator polynomial and 

syndromes, which can be written as a matrix like the 

following: 

 

[

𝑆𝑡 𝑆𝑡−1 … 𝑆1

𝑆𝑡+1 𝑆𝑡 … 𝑆2

⋮ ⋮ ⋱ ⋮
𝑆2𝑡−1 𝑆2𝑡−2 … 𝑆𝑡

] [

𝜎1

𝜎2

⋮
𝜎𝑡

] = [

−𝑆𝑡+1

−𝑆𝑡+2

⋮
−𝑆2𝑡

] 

 

The matrix equation can be solved using many 

techniques, but the most used is the Berlekamp-Massey 

which can efficiently finds the coefficient of the error 

locator polynomial 𝜎(𝑥). 

After finding the error locations, the magnitudes of the 

errors must be determined to correctly fix the error in the 

codeword. To determine them, another set of equation 

system that uses the syndrome and the error locations as is 

the following: 

𝑆𝑖 = ∑ 𝑒𝑗𝛽𝑗
𝑖

𝜈

𝑗=1

, 𝑖 = 1,2, … ,2𝑡 

Where 𝑒𝑗  are the error values and 𝛽𝑗 are the error 

locations. Solving this equation system provides the 

magnitudes of errors at the identified locations.  

With both the locations and values of errors identified, 

the errors can now be subtracted from the received 

codeword to recover the original data. To do this, we 

construct the error polynomial with the following 

definition: 

𝑒(𝑋) = ∑ 𝑒𝑗𝑋𝑙𝑗

𝜈

𝑗=1

 

Where 𝑗 is the error index (the 𝑗-th error) and 𝑙𝑗 is the 

location of the 𝑗-th error. The corrected codeword is then 

calculated by the following equation: 

𝐔
^

(𝑋) = 𝐫(𝑋) + 𝐞
^

(𝑋) = 𝐔(𝑋) + 𝐞(𝑋) + 𝐞
^

(𝑋) 

With this the removes the errors and restores the 

transmitted codeword to its original state with The 

rightmost 𝑘 symbols represent the original message.   

 

IV.   IMPLEMENTATION 

The program is made by python and has a single class of 

ReedSolomon that encompass all the functions needed to 

encode and decode Reed-Solomon codes. The created 

functions is mainly split into two types, function for Galois 

field arithmetic operation and polynomial arithmetic 

operation. The function that we first create is the function 

to create the Galois field.  

  
Fig 4.1. Generate Galois field 

Source : writer’s archive 

 

We create the Galois field with the primitive polynomial 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 which can be represented by the 

hex 0x11d. The Galois field is done by using two list, 

gf_exp and gf_log which is a lookup table that is made for 

efficient multiplication and division in the Galois field.  

The encoding is computed by making a padded data with 

the length of 𝑛 and dividing them with the generator 

polynomial that we have created. We append the remainder 

of the division into the original data and we have our 

encoded data with (𝑛 − 𝑘)/2 error correction capabilities.  

 

 
Fig 4.2. Encode the data 

Source : writer’s archive 

 

The decoding is done by first calculate the syndrome of 

the codeword, where if all the syndrome is zero then the 

codeword has no error. Otherwise, the calculated syndrome 

is used in the error locator function. 

 

 
Fig 4.3. Decode codeword main function 

Source : writer’s archive 

 

The error_locator_eval function is a function for 

identifying the locations of errors in the received 

codeword. It uses the Berlekamp-Massey algorithm to 

iteratively compute the error locator polynomial and its 

corresponding evaluator polynomial from the syndromes. 
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The syndromes are values that indicate discrepancies 

between the received codeword and the expected 

codeword. The output of this function is the final error 

locator polynomial (current_x) and the evaluator 

polynomial (current_v), which will later be used for 

finding the exact error positions and magnitudes. 

 

 
Fig 4.4. Error locator and evaluator function 

Source : writer’s archive 

 

The find_errors function is responsible for locating the 

positions of the errors in the codeword. It leverages the 

error locator polynomial generated by error_locator_eval. 

The error locator polynomial has roots that correspond to 

the locations of the errors in the received message. This 

function evaluates the locator polynomial at different 

powers of a primitive element 𝛼, essentially checking 

where the polynomial evaluates to zero. The positions 

where the polynomial evaluates to zero indicate the error 

locations.  

 

 
Fig 4.5. Find the location of the error 

Source : writer’s archive 

 

The correct_error function uses the error locator 

polynomial and evaluator polynomial to correct the errors 

found in the received codeword. Once the error locations 

are determined, the function iterates through each error 

position and calculates the magnitude of the error at that 

position. The error magnitude is determined by evaluating 

the error evaluator polynomial and the derivative of the 

error locator polynomial at the corresponding position. 

These evaluations give the values needed to correct the 

error. Specifically, the function evaluates the locator 

polynomial at the inverse of the error position (to find the 

location in the Galois Field), and uses this to compute the 

error magnitude. It then XORs (corrects) the received 

codeword by the magnitude at the corresponding positions, 

fixing the errors. The result is a corrected version of the 

received codeword, now matching the original transmitted 

message. 

 

 
Fig 4.6. Error correction function 

Source : writer’s archive 

 

 

V.   CONCLUSION 

The application of polynomial interpolation in error 

correction, particularly through Reed-Solomon codes, 

highlights the synergy between mathematical theory and 

practical technology. Reed-Solomon codes, built on the 

principles of polynomial interpolation and Galois fields, 

demonstrate exceptional capabilities in detecting and 

correcting both burst and random errors in diverse data 

transmission and storage scenarios. 

The encoding and decoding mechanisms of these codes, 

along with their reliance on efficient mathematical 

algorithms such as the Berlekamp-Massey algorithm, 

underline their robustness and efficiency in real-world 

applications. From CDs and DVDs to QR codes and 

satellite communications, Reed-Solomon codes ensure 

data integrity even in adverse conditions, making them 

indispensable in modern digital systems. 

This study underscores the enduring importance of 

mathematical tools in advancing technology, serving as a 

testament to the practical impact of concepts like 

polynomial interpolation and finite fields. Future research 

and development may continue to enhance the 

performance and versatility of these codes, paving the way 

for even more resilient data systems. 
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